skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jeon, Chae Kyung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. on mobility-mass spectrometry (IM-MS) has become a technology deployed across a wide range of structural biology applications despite the challenges in characterizing closely related protein structures. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing closely related, iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. With the speed and sensitivity of CIU analyses, there has been a rapid growth of CIU-based assays, especially regarding biomolecular targets that remain challenging to assess and characterize with other structural biology tools. With information-rich CIU data, many software tools have been developed to automate laborious data analysis. However, with the recent development of new IM-MS technologies, such as cyclic IM-MS, CIU continues to evolve, necessitating improved data analysis tools to keep pace with new technologies and facilitating the automation of various data processing tasks. Here, we present CIUSuite 3, a software package that contains updated algorithms that support various IM-MS platforms and supports the automation of various data analysis tasks such as peak detection, multidimensional classification, and collision cross section (CCS) calibration. CIUSuite 3 uses local maxima searches along with peak width and prominence filters to detect peaks to automate CIU data extraction. To support both the primary CIU (CIU1) and secondary CIU (CIU2) experiments enabled by cyclic IM-MS, two-dimensional data preprocessing is deployed, which allows multidimensional classification. Our data suggest that additional dimensions in classification improve the overall accuracy of class assignments. CIUSuite 3 also supports CCS calibration for both traveling wave and drift tube IM-MS, and we demonstrate the accuracy of a new single-field CCS calibration method designed for drift tube IM-MS leveraging calibrant CIU data. Overall, CIUSuite 3 is positioned to support current and next-generation IM-MS and CIU assay development deployed in an automated format. 
    more » « less
  2. Growing evidence supports the confident association between distinct amyloid beta (Aβ) isoforms and Alzheimer's Disease (AD) pathogenesis. As such, critical investigations seeking to uncover the translational factors contributing to Aβ toxicity represent a venture of significant value. Herein, we comprehensively assess full-length Aβ42 stereochemistry, with a specific focus on models that consider naturally-occurring isomerization of Asp and Ser residues. We customize various forms of d -isomerized Aβ as natural mimics, ranging from fragments containing a single d residue to full length Aβ42 that includes multiple isomerized residues, systematically evaluating their cytotoxicity against a neuronal cell line. Combining multidimensional ion mobility-mass spectrometry experimental data with replica exchange molecular dynamics simulations, we confirm that co- d -epimerization at Asp and Ser residues within Aβ42 in both N-terminal and core regions effectively reduces its cytotoxicity. We provide evidence that this rescuing effect is associated with the differential and domain-specific compaction and remodeling of Aβ42 secondary structure. 
    more » « less